LeetCode 376. Wiggle Subsequence

Question

A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.

For example, [1,7,4,9,2,5] is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5] and [1,7,4,5,5] are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.

Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.

Example

1
2
3
4
5
6
7
8
9
10
Input: [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence.

Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].

Input: [1,2,3,4,5,6,7,8,9]
Output: 2

Solution

该题使用两个一维数组保持状态,分别是当前值和前面的值相差为正和负的两种情况。

  • Solution 1: 从第二个元素开始遍历,中间使用一个for loop来遍历在i之前的数看在那个点操作获取最大值(这和longest increasing subsequence一样的思路)。如果当前元素比前面的大,可以表示为up[i] = Math.max(up[i], down[j] + 1);相反,down[i] = Math.max(down[i], up[j] + 1); 相同的话就保持前面的值即可。
  • Solution 2: 依然按照上面的的思路,但是我们每一次进行更新的时候可以将UP以及DOWN数组都更新,而不需要返回来去比较寻找。这样可以优化到O(n)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// time:O(n^2) space: O(n)
public int wiggleMaxLength(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] up = new int[n];
int[] down = new int[n];
up[0] = 1;
down[0] = 1;
// 这个题就类似于求longest increasing subsequences.
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
up[i] = Math.max(up[i], down[j] + 1);
} else if (nums[i] < nums[j]) {
down[i] = Math.max(down[i], up[j] + 1);
} else {
up[i] = up[i - 1];
down[i] = down[i - 1];
}
}
}
return Math.max(up[n - 1], down[n - 1]);
}

// time:O(n) space:O(n)
public int wiggleMaxLength2(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] up = new int[n];
int[] down = new int[n];
up[0] = 1;
down[0] = 1;
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) { // up
up[i] = down[i - 1] + 1;
down[i] = down[i - 1];
} else if (nums[i] < nums[i - 1]) { // down
down[i] = up[i - 1] + 1;
up[i] = up[i - 1];
} else {
down[i] = down[i - 1];
up[i] = up[i - 1];
}
}
return Math.max(down[n - 1], up[n - 1]);
}

// time:O(n) space:O(1) 优化空间,因为只是依赖前后的值
public int wiggleMaxLength3(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int up = 1;
int down = 1;
for (int i = 1; i < n; i++) {
if (nums[i] > nums[i - 1]) { // up
up = down + 1;
} else if (nums[i] < nums[i - 1]) { // down
down = up + 1;
}
}
return Math.max(down, up);
}

Reference